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I.  INTRODUCTION 
 

Forest fires are an important problem in regions which 

present hot climate and large areas covered with vegetation. 

It is reported in [1] that, each year, the 0.1% of the world 

forest surface is lost due to forest fires. The simplest 

approach for monitoring this problem is the adoption of 

manned tow-ers in the most critical areas. However, the 

deployment of surveillance cameras can be a more feasible 

solution since a great number of cameras can be monitored 

in a single place. Recently, computer vision techniques for 

fire monitoring have been researched. These systems allow 

the vision at a high distance and without latency, and permit 

to measure more information related to the fires, such as the 

size and direction [2]. 
 

Since the smoke produced by wildfires is visible much 
before the flames, the approach proposed in this paper 
focuses on the detection of smoke regions in frame 
sequences.  

Starting from the preliminary works published in [3] and 

 

Early wildfire detection is essential in order to assess an effective 

response to emergencies and damages. In this paper, we propose a 

low cost approach based on image processing and computational 

intelligence techniques, capable to adapt and identify wildfire 

smoke from heterogeneous sequences taken from a long distance. 

Since the collection of frame sequences can be difficult and 

expensive, we propose a virtual environment, based on a cellular 

model, for the computation of synthetic wildfire smoke sequences. 

The proposed detection method is tested on both real and simulated 
frame sequences. Results show that the proposed approach obtains 

accurate results. 
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[4], we propose in this paper a comprehensive methodology 

capable to detect wildfire smoke plumes in video sequences, 

which is able to automatically adapt the system configuration 

(e.g., the choice of the relevant features to process, the pos-

sibility to enrich the available training image sequences with 

different realistic simulated conditions, the final 

classification structure and topology) to the specific 

characteristics of the applicative environments.  
This approach is designed to work in real-time 

applications based on low power and low cost hardware. The 

considered frame sequences are captured by low resolution 
cameras in visible light conditions. The approach uses image 
processing algorithms to extract a set of distinctive features, 
and then applies computational intelligence techniques to 

detect the presence of smoke clouds. Computational 
intelligence methods permit to dynamically adapt the system 
to the environment, thus achieving a greater flexibility and 

accuracy than tradi-tional techniques.  
The training of computational intelligence classifiers re-

quires a big number of frame sequences. However, it can be 

very difficult and expensive to obtain frame sequences of the 

same environment in normal situations, during a wildfire, 

and in different weather conditions. For this reason, we also 

propose a virtual environment for the computation of 

synthetic smoke sequences, which is able to inject a distant 

smoke cloud in frame sequences captured in real applicative 

scenarios. The proposed method is also able to simulate 

external forces and adverse environmental conditions.  
The contribution of the work is then twofold. We propose 

a wildfire smoke detection method based on image 

processing techniques that is specifically designed to be 

applied in a great variety of environments and weather 

conditions, and we present a virtual environment designed 

for the computation of the frame sequences useful to enrich 

the available images used to train the wildfire detection 

systems. Moreover, with respect to the works presented in 

[3,4], we studied and implemented also the possibility to 

automatically select the most relevant features to be 

processed by the system in every specific environment, we 

introduced a sensitivity analysis of the most relevant 

parameters present in the proposed algorithms, and we 

presented the possibility to tune the robustness of the smoke 

detection approach to false alarms, by analyzing the ROC 

curves obtained with different classification thresholds. 
 

The proposed wildfire detection approach includes two 

distinct algorithms: Algorithm A is designed to segment smoke 

clouds in every frame of surveillance frame sequences; Algo-

rithm B is designed to raise an alarm in the presence of smoke 

clouds by evaluating the characteristics of single frames. These 

algorithms can be divided in the same steps. First, a set of 

features describing different physical characteristics of the 

smoke clouds (related to the color, shape, and evolution during 

the time) are extracted. The used features are similar to the ones 

described in [3]. Then, computational intelligence techniques 

are used to classify every frame as ―smoke‖ or ―non-smoke‖. 

Feature selection techniques are also used in order to reduce the 

computational time.  
The proposed smoke simulation environment is based on the 

method presented in [4], and uses a cellular model that 

considers the rules of propagation and collision to recreate the 

basic principles of advection, diffusion, and buoyancy. External 

forces, such as wind, are simulated by adding pseudo-random 

variations in the virtual model. The resulting smoke plume is 

then merged with a real frame sequence. Finally, adverse 

environmental conditions, such as low illumination, fog, and 

acquisition noise, are added to the model.  
Experimental results show that the proposed smoke 

detection approach is able to obtain accurate results on 

datasets of frame sequences describing a greater number of 
environmental scenarios and weather conditions with respect 

to other tech-niques in the literature. Moreover, the proposed 

method for the simulation of synthetic smoke sequences 
permits to create   
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realistic datasets, which can be used to train smoke detection 
systems and increase their accuracy and adaptability.  

 
II. PREVIOUS WORK 

 
A. Machine vision techniques for smoke detection 
 

Smoke detection systems based only on machine vision 

techniques that use frame sequences captured in visible light 

conditions can be divided in systems based on single images 

and systems based on multiple frames. In the first case, the 

detection systems can be considered as image segmentation 

techniques. Techniques belonging to the first class are still 

studied. For example, a method based on the image histogram 

is presented in [5]. The majority of the wildfire detection 

systems belong to the second class and are based on dynamic 

characteristics of the smoke [6]. This class of smoke detection 

systems includes methods based on texture, shape, color, 

movement, energy, and frequency.  
The use of color features is presented in the method 

described in [7], which performs the search of the pixels that 

present similar values on all the RGB channels. The methods 

presented in [1,8,9] use texture features to detect smoke 

regions. The method described in [8] extracts the regions of 

the image with a high variability and then compares them with 

regions previously extracted from the smoke frame sequences. 
 

A predetermined color model that describes the smoke is 
presented in [9] and considers the way in which the model 
blends into the frame. Tamura features, GLCM, gray 
intergrowth matrix, wavelet-extracted features [10] are used 
by the system proposed in [1].  

Features related to shape and movement, such as area, 
direction, circumference, growth, and wavelet transforms, are 
described in [11–13]. Combinations of these features are also 
used in the works described in [14–17].  

Visual and shape features, wavelet transforms, and 
statistical modeling are combined in the approach described in 
[18,19], which in particular deals with the problem of 
detecting long-range wildfire smokes.  

Another approach that aims to detect forest smoke is pro-
posed in [13], and uses features based on motion detection and 
related to moving edges. Shape properties, like growing 
regions, are also used in order to discriminate false alarms.  

Systems for fire and smoke detection can be based on 

different classifiers. The use of probabilistic classifiers and 

support vector machines (SVM) for the detection of smoke in 

open areas at a medium distance is proposed in [8,20]. SVM 

are used also in [11,16,17], while neural networks are adopted 

in [10,15]. Hidden Markov Models and Bayesian classifiers 

are used respectively in [19] and [21]. 
 

A low-cost method for the segmentation of wildfire smoke in 
low-quality frame sequences is proposed in [3]. This method 
is based on neural classifiers and uses features related to the 
analysis of the motion, color, edges, growing and rising 
regions.  

An example of a machine vision system currently deployed 

for wildfire monitoring is presented in [22]. The system uses a 

multi-agent architecture, with an image processing stage for 

the smoke detection. This stage is based on the motion 

detection, image segmentation, and analysis of the dynamic 
pattern, color-space, and texture. A dedicated processing step 

is also used to reduce false alarms [23].  
A review of machine vision system for wildfire smoke 

detection is proposed in [24]. 
 
B.  Smoke simulation methods 
 

Since it is difficult to collect a big number of smoke frame 

sequences, it is possible to use simulated data in order to train 

and validate the classifiers used by the smoke detection sys-

tems. In the literature, there are techniques for the simulation 

of smoke frame sequences designed for different applicative 

contexts. The two major applicative contexts related to the 

simulation of smoke frame sequences are the Computational 

Fluid Dynamics (CFD) and Computer Graphics (CG). All of 

the methods appertaining to these areas are based on the 

equations of the fluid flow.  
The Navier-Stokes equations describe the physical model used 

in fluid dynamics by considering the flow of a compress-ible and 

viscous fluid in terms of a velocity vector field [25]. Considering 

gaseous fluids, such as smoke, these equations can be simplified 

and substituted by the Euler equations [26]. The exact solutions 

of the physical equations of fluid mechanics are computed by the 

CFD applications in order to achieve a realis-tic understating of 

the phenomenon evolution. These methods are especially used in 

engineering and testing applications. The CG applications, 

instead, focus on the creation of a realistic fluid that can be 

processed in real time. The sense of reality and the capability of a 

quick rendering of the scenes (e.g. for computer games) [27] are 

more important than the rigorous implementation of physical 

laws. Most of the CG methods are based on approximations of 

the described physical laws in order to obtain results comparable 

to real data.  
This paper focuses then on the CG approach, since we are 

interested in using the resulting simulated smoke for computer 
vision applications. Moreover, the rigorous solution of 
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physical laws would be complicated and not necessary in 
order to simulate a distant smoke plume.  

The method described in [28] can be considered as a CG 

approach and starts with an implementation of a numerical 

malgorithm that solves the Navier-Stokes equations. This 

method, however, is stable only when the time step t is 

sufficiently small. An always stable method is described in 

[29], for which some implementations are even available [30]. 

The approach defined as ―Vorticity Confinement‖, described 

in [27] and [31], is designed in order to overcome the problem 

of the numerical dissipation. The numerical approximation 

introduced by the finite precision of computers, in fact, results 

in an attenuation of some features of gaseous substances. This 

approach consists in feeding the energy back to the systems in 

the form of vortexes. 
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Another technique that is often used to model the flow of a 

fluid is based on the lattice gas cellular automata (LGA). In 

order to obtain a macroscopic simulation that realistically 

represents the modeled fluid, this approach does not propose a 

solution for the Navier-Stokes equations, but it focuses on the 

interactions of the microscopic particles that compose the 

fluid. The smoke plume is then modeled as a grid, in which 

Boolean variables indicate the positions of the particles. 

Propagation rules are used to describe the evolution of the 

system that must conserve mass and momentum [32]. The 

Navier-Stokes equations can be derived from the LGA 

[33,34]. Examples of clouds and smoke simulation using the 

LGA are proposed in [35,36].  
Lattice Boltzmann methods (LBM) are a derivation and 

improvement of the LGA, in which the Boolean values are 

substituted by the particle densities described by real values. 

The Navier-Stokes equations can also be derived from the 

LBM model [37]. An implementation of the LBM for gas 
simulations is described in [38].  

A method that uses a lightweight implementation of a LBM 
model for the wildfire smoke simulation is proposed in [4]. 

 
III.  WILDFIRE DETECTION METHODS 

 
The proposed approach, compared with many existing 

smoke detection systems based on different kinds of sensors 
and IR illumination techniques (e.g. the one proposed in [22]), 

requires a less expensive hardware setup, based on low-cost 
cameras (with a resolution equal to 320×240 pixel), operating 

in visible light conditions.  
The feature extraction step, similar to the one described in [3], 

considers physical properties of the smoke clouds used also by 

[13,19], such as moving regions, smoke color, growing and rising 

regions. However, the proposed approach is designed to be used 

in real-time applications and is based on feature extraction 

techniques that require limited resources in terms of 

computational time and memory usage. For example, the rising 

regions are described using a less complex model than [13]. 

Moreover, the approach is designed to be used in different 

applicative contexts. For example, the proposed techniques for 

the color analysis and the computation of growing and rising 

regions perform analyses less related to the environmental 

scenarios with respect to [8,13,20].  
Only a small number of frames, ranging from 5 to 10, is 

kept under consideration during the feature extraction step, 

then the computed features are reduced using a sequential for-

ward feature selection algorithm, applied separately on every 

particular scenario. Computational intelligence techniques are 

then used to classify the features and adapt the system to the 

considered environment.  
The proposed approach includes two distinct algorithms: 

 
• Algorithm A - Performs the segmentation of the 

smokearea for each frame of a frame sequence. 
 

• Algorithm B - Uses computational intelligence 
classifiersin order to detect the frames containing smoke 
plumes. 

 
First, a set of features are extracted from the frame sequence. 
The computed features are then used as inputs of classifiers 
based on computational intelligence techniques, which output 



                                                       Print ISSN: 2249 – 3492, Online ISSN: 2249 – 3506 

 

   

 

Nisha. V.S / Management, Science and Technology / 2017 / 41 

 

International Journal of Research in 

Management, Science and Technology 

 

Management, Science and Technology 
 
 
a Boolean value that represents the classes ―smoke‖ and 
―non-smoke‖. 
 
A.  Feature extraction 
 

In long range wildfire smoke plumes, frequency analysis is 
not sufficiently distinctive. The focus is then on features 
related to the movement and shape.  

Algorithm A and Algorithm B use the same feature extrac-
tion steps:  

1) moving region detection;  
2) smoke-color analysis;  
3) sharp edge detection;  
4) growing region detection;  
5) rising region detection;  
6) perimeter disorder analysis;  
7) feature set computation. 

 
The feature set computation is performed in different 
manners by the two proposed algorithms.  

1) Moving region detection: the detection of moving re-
gions consists in the extraction of the candidate smoke 
regions by estimating the differences between a frame and a 
reference background image. This step is based on the works 
proposed  
in [39] and [18]. A pixel is considered as moving if:  

|I(x, y, t) − I(x, y, t − 1)| > TI (x, y, t) , (1) 

|I(x, y, t) − I(x, y, t − 2)| > TI (x, y, t) , (2) 
 
where I(x, y, t − 1) is the intensity of the pixel (x, y) in the (t 

− 1)-th frame of I, and TI (x, y, t) is an adaptive threshold 

value. The value of TI (x, y, t) is updated according to: 
  (t) + (1 − b)(c|I(x, y, t)  

 

TI (x, y, t+1) = 
bTI

if (x, y) is stationary − B(x, y, t)|) 
 

 
TI ( t)  

 

    

    
 

  if (x, y) is a moving pixel  

     

 
(3

) where B(x, y, t) is the intensity of the estimated background  
related to the frame t at the position (x, y), and c, d are two 
real positive constants. The initial values of these thresholds 
are fixed numbers greater than 0. The background image is 
adaptively estimated as follows:  

 
 aB 

(x, y, t) + (1 − a)I(x, y, t)  
 

B(x, y, t + 1) = 
if (x, y) is stationary 

,   (4)  

 
B(x, y, t)  

    

     
  

if (x, y) is a moving pixel 
 
where I(x, y, t) is the intensity of the pixel at the location (x, 

y) in the t-th frame of the sequence I, and a is a real and 

positive constant close to one. Initially, B(x, y, 0) is equal to 
the first frame I(x, y, 0).  

In order to detect the slow moving regions, two different 
reference background images are estimated at different 

instants of time. The background image Bf (x, y, t) is updated 

at every frame, and the image Bs(x, y, t) is updated with a 

period of 1 s. A matrix DM (x, y, t), which represents the 
motion of every pixel (x, y, t), is then computed: 
 0 if |BF (x, y, t) − BS(x, y, t)| ≤ TL 

 

  (|BF (x, y, t) − BS (x, y, t)| − TL)/(TH − TL)  

DM (x, y, t) =   ,  

   

   if  ≤ TL|BF (x, y, t) − BS(x, y, t)| ≤ TH  

 
 1  

 
if  ≤ TH |BF (x,  y, t) − BS (x, y,  t)| 

 

     

     

   (5) 
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where 0 < Tl< Th are fixed threshold values. The elements 

of DM (x, y, t) with a value that is less than a threshold TM 
are set to 0 in order to remove false growing regions related to 
the noise present in the frame sequence.  

2) Smoke color analysis: first, each frameI(x, y, 
t)isconverted from the RGB to the YUV color space. Then, a 

smoke  color feature matrix  DC (x, y, t),  similar  to the  one 
 

used in [18], is computed for each pixel (x, y, t) by using 
 

the equation: 
 

     
 

   1 −  |U (x, y, t) − 128| + |V (x, y, t) − 128| 
 

   

 

      

    128   
 

    
if (Y (x, y, t) − U (x, y, t) > T1)  

          

D C (x, y, t) =       
 

    

and (Y (x, y, t) − V (x, y, t) > T2)  

      

         
 

     and (T3 ≤ Y (x, y, t) ≤ T4)   
 

    

0  otherwise 
   

 
(6) 

where T1, T2, T3, T4 are fixed thresholds. The elements of 
DC (x, y) with a value that is less than a threshold TC are then 

set to 0 in order to reduce the areas that do not represent 
smoke clouds.  

3) Sharp edge detection: the sharp edge detection step 
aimsto search high differences in the luma channel of adjacent 
frames, usually not present in the regions containing smoke 

clouds. The differences of intensity are computed by consid-
ering the Y channel of the frames I(x, y, t) and I(x, y, t − 1): 
 

DY (x, y, t) = |(Y (x, y, t) − Y (x, y, t − 1)| . (7) 
 
The result is then thresholded in order to remove the values of 

DY (x, y, t) that are less than a fixed threshold TS and to 
consider only the values related to sharp edges.  

4) Growing region detection: growing regions of the 
framesequence are detected by considering the image 
computed as the difference between the moving regions at the 
time instants t and t − 1:  

DM−diff (x, y, t) = DM (x, y, t) − DM (x, y, t − 1) .   (8) 
 
The summation of the resulting matrix is then computed. In 
order to avoid excessive data fluctuations, only positive values 

of DM−diff are considered: 
X 

DG(t) = (DM−diff (x, y, t)) ∀ DM−diff (x, y, t) > 0 ,  
x,y  

(9) 
where DG(t) is related to the time instant t and represents the  
growing of the region. DG is then normalized between two 

empirically estimated thresholds TGL and TGH . The range of 

values between TGL and TGH is defined in order to match all 

the possible values of DG(t) related to growing smoke clouds.  
5) Rising region detection: similarly to [19], the risingvalue 

is computed as the difference between the y coordinates of the 
moving pixel with the lowest y value at the frames t−n and t. 

For each frame, the location of the moving pixel with the 
lowest y coordinate is extracted: 



                                                       Print ISSN: 2249 – 3492, Online ISSN: 2249 – 3506 

 

   

 

Nisha. V.S / Management, Science and Technology / 2017 / 43 

 

International Journal of Research in 

Management, Science and Technology 

 

Management, Science and Technology 
 

Two empirically estimated thresholds TRL and TRH are then 

used to normalize the values of DR in order to better match 
the values of the previously computed rising smoke regions.  

6)  Perimeterdisorderanalysis:first, the Matrix 

DM (x, y, t),  which  describes  the  motions of  the Frame 
regions, is binarized by using the threshold value TM . Then, 

the area and perimeter are computed for each 8-connected 
region of the binary image. The value that describes the 
perimeter disorder for each region is computed as: 

RP (i, t) = Pi ∀ 1 < i < Nb  , (11)  

  

 Ai  
 

where  RP (i, t)  is  the perimeter  disorder  of the  i-th 
 

8-connected region at the time instant t, Pi and Ai are the 

perimeter and area of the i-th region, and Nb is the number of 
considered regions. 

A matrix DP (x, y, t) that contains the values of RP (i, t) 

related to each pixel is then computed. An approach for false 
alarms reduction based on a similar principle is described in 
[23].  

7) Feature set computation: The features sets used by 
theAlgorithm A and Algorithm B are computed in different 
manners. 
 

• Algorithm A - The features are extracted for every pixelof 
each frame of the frame sequence. The features are 

 

computed by considering N previous frames. The grow-

ing value DG (t), rising value DR (t), and the perimeter 

disorder value DP (t) are the same for every moving pixel 
of the frame. N growing and rising values are then 
considered.  

For each pixel, 4 + (N × 2) features are extracted: 

–  Moving value:DM(x, y, t); 

–  Smoke color value:DC(x, y, t);  

–  Sharp edge transition value:DY(x, y, t);  

–  N×Growing values:DG(t−N, . . . , t).  

–  N×Rising values:DR(t−N, . . . , t).  

–  Perimeter disorder value:DP(x, y, t). 
 

• Algorithm B - For each frame, the features are ex-tracted 

globally by considering data related to N previous 
frames. The characteristics related to the single pixels 

(smoke color, and sharp edge transitions) or related to 
local regions of the frame (the perimeter disorder value) 

are aggregated considering the mean value.  

For each frame, 3 + (N × 2) features are extracted: 

–  Global smoke color value: mean(DC(t)>0); 

–  Global sharp edge transition value: 
mean(DY (t) > 0); 

–  N×Growing values:DG(t−N, . . . , t). 
–  N×Rising values:DR(t−N, . . . , t).  
–  Perimeter disorder value: mean(DP(t)>0); 

 
B. Feature selection and classification 

 
DM0(x, y, t) = DM (x, y, t) > 0, 

H(t) = min DM0(x, y, t). 
y  

The rising value DR(t) is then computed:  
DR(t) = H(t) − H(t − n) . 

 
In order to extract the most distinctive features and reduce 

the required computational time, a sequential forward feature 

selection algorithm, based on kNN, is used. The feature 
selection is applied separately on the sets of frame sequences 
depicting distinct scenarios, in order to better adapt the pro-  

(10) posed approach to different contexts. 
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The obtained features are the inputs of computational intel- where fi
′
(x, y, t) is the new number of particles with direction 

 

ligence classifiers and statistical classifiers. For each sample, i, position (x, y), and time t. Ci is the numerical coefficient of 
 

the  output  of  the  classifiers  is  a  binary  value  ―smoke‖  / diffusion, representing the percentage of particles in the cell 
 

―non-smoke‖. We tested linear and quadratic classifiers, neural with direction i, after the collision.     
 

networks, and k-nearest neighbor.  The propagation rule is defined as follows:  
 

  
IV.  SMOKE SIMULATION METHOD 

 fi(x + eix, y + eiy , t + 1) = fi
′
(x, y, t) , (16) 

 

  

where eix and eiy  are the x and y velocities components of 
 

The proposed smoke simulation method aims at the com-  

the i-th direction respectively, expressed in pixel / frame, and  

putation of long-range wildfire smoke clouds, which can be 
 

fi
′
(x, y, t) is the new number of particles after the application 

 

used to train classifiers used by wildfire detection methods. of the collision rule.          
 

The method is based on a lightweight physics-based model, 
         

 

Similarly to the method presented in [36], a matrix C is used  

implemented using image processing techniques.  

to model the coefficients, which represent the interactions with  

A smoke simulation method should consider the Navier-  

the air particles and the scattering of the particles in the four  

Stokes  equations.  In  the  case of  gaseous  fluids  (such  as  

possible directions:          
 

smoke), these equations can be simplified in the Euler for- 
         

 

 

C = 
0 

 

0.20 0 
. 

 
 

mulas: 
        

 

      0.20 0.32 0.20 (17) 
 

  ∇u = 0 ;  (12)   0  0.08 0   
 

   ∂u   Combining the Eq. 16 and Eq. 15, the equation that globally  

        

   

∂t = −(u∇)u − ∇p + f  . (13) 
 

   describes the evolution of the model is defined as:  
 

         

where u is the velocity vector field, p is the pressure and f is 
fi(x + eix, y + eiy , t + 1) = Ci fi(x, y, t) . (18)  

an external force. The symbol ∇ is the vector of spatial partial  

              
i 

    

derivatives.             X    
 

     Mass and momentum conservation are guaranteed by im-  

The  proposed  approach  is  based  on  [4], and  uses  the  

posing           
 

physical model only as a base, since many features of the 
 

           

     2 2    
 

smoke cannot be seen from a great distance (e.g. > 1 Km).  Ci = 1 ; ei = qeix + eiy = 1 . (19) 
 

        
i 

          

The main parameters used in the simulation to control the  X          
 

            

strength of the smoke are the extension E, density D, and B.  External forces          
 

speed S of the simulated smoke plume.  The wind  is  modeled by including additional pseudo-  

The  proposed approach  can be  divided  in the  following  

random movements  to  the propagation equation  (Eq.  16),  

steps: 
      

 

      proportional to the distance of the particles from the smoke  

1) initial plume computation; 
 

 

 source:           
 

2) external forces computation; 
 

mx = Mdx 
 

my = Mdy  , 
 

 

  ; (20) 
 

3) velocity estimation;   where mx and my are the movements in the x and y directions,  

4) merging with the frame sequence; 
 

 

 
dx and dy  are the directions of the drift, and M is the drift  

5) simulation of adverse conditions.  
 

 value. M is computed as:         
 

               
 

        
M = 

_
 

L 2     
 

A.  Initial plume computation 
    _

· fd  , 
  

(21) 
 

   H   
 

The first step is based on the LBM technique and consists 
where L is the distance of the cell from the source of the  

in the initialization of a two-dimensional grid with a real finite  

smoke, H is  the  height of the  smoke  plume,  and fd  is  a 
 

number of particles, related to a space-time function fi(x, y, t),  

multiplying factor.  The  values of  dx  and  dy  are  randomly  

which describes the density of the particles at the position 
 

chosen from five possible directions (0
◦
, 45

◦
, 90

◦
, 135

◦
, 180

◦
). 

 

(x, y), at the time instant t, and direction i. Only four possible Different movements are simulated by changing the coeffi-  
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directions (0

◦
, 90

◦
, 180

◦
, 270

◦
) are considered by the used 

 

model. Each instant of time t consists in an image, and the cients of  the  matrix  C described in  Eq.  17.  Two different 
 

versions of the matrix C are used in order to favor the left  

evolution of the model generates a series of frames.  

(CL) or the right (CR) movement of the smoke plume: 
 

At each time instant, new particles are injected at the starting  

 

CL = 
0 0.20 0 

. 

  

point of the model, according to the chosen density D and 
  

 

 0.20 0.32 0.08 (22) 
 

extension E:   fi(xi, yj , t) = D , (14)   0 0.20 0   
 

where xi, yj represent a  set  of E positions, chosen as  the The matrix CR is computed in a similar way.  
 

The effects of the buoyancy force majorly depend on the  

starting point of the smoke plume. 
  

 gas temperature. The equation of the buoyancy force can then  

At each time instant, the rules of collision and propagation  

be expressed in relation to the temperature of the gas [38]:  

are applied in order to determine the evolution of the model.  

 

Fb = Hg(Tk− Tambient) , (23) 
 

The collision rule is expressed as:   
 

  ′ 
fi(x, y, t) , 

 where Fb is the buoyancy force, g is the gravity force, H is  

  
fi (x, y, t) = Ci (15)  

  
the coefficient of thermal expans ion, Tk the temperature o f  

     

i 
             

 

                             (a) (b) (c) 
 
 
 
 
 
 
 
 
 
Fig. 1.   Examples of real and synthetic smoke plumes in the same conditions: (a,b,c) real smoke;   

 

the smoke cloud, and Tambient  is the ambient temperature. buoyancy respectively. As a consequence, the greater these 
 

The heat equation determines the evolution of the temperature intervals are, the slower the resulting simulated smoke is. 
 

in the system:  ∂u          It is then possible to choose a particular value for the speed 
 

                 
 

   

 
− α∇

2
u = 0 , 

 

(24) parameter S = (Sh, Sv), and define the values Nc, Nd, Nb 
 

  ∂t  
 

where  u is  the function  u(x, y, z, t),  which  describes  how accordingly to it.      
 

      
 

the temperature is changing in a determined region over the       
 

time. Since the variations of the gas temperature are similar D.  Merging with the frame sequence   
 

to the way in which the gas particles scatter, our approach 
The merge of the smoke model with the frame sequence  

considers the temperature as proportional to the concentration  

is performed frame-by-frame by adding the intensity of the  

of the particles in each cell, similarly to the approach described  

smoke to the frame: 
     

 

in [38]. If we assume that the environmental temperature is      
 

 

S(x, y, t) 
  

 

constant, it is possible to model the buoyancy force (Eq. 23) F (x, y, t) = R(x, y, t) + ∀x, y, t , (28)  

    

as a movement along the vertical direction, proportional to the 
 

fm 
 

    
 

number of particles that are present in the cell:  where R is the real frame sequence, S is the simulated smoke, 
 

     

Pi 

f (x, y, t)   and  fm  is  a  constant  used  to  control  the  visibility  of  the 
 

 B = 
i
fb  ,  (25) resulting smoke. Positive values of fm generate a high albedo 

 

where B is the movement of the particles at the location (x, y) smoke, and negative values of fm produce a low albedo smoke. 
 

Examples of real and synthetic smoke plumes are shown in 
 

and fb is a proportionality factor.      
 

     
Fig. 1.      

 

                      
 

C.  Smoke speed                       
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The smoke movement speed S is controlled by performing 

 
 

E.  Simulation of adverse conditions   
 

the  propagation, drift,  and  applying the buoyancy force  at As a final step, we simulate different adverse conditions,  

certain frame intervals. The speed S can be divided in its hor- 
 

in particular we introduce additive noise, different light con-  

izontal and vertical contributions, according to the formulas: 
 

ditions  (increased  and  decreased  luminance),  and  the  fog  

                  

 
3 

    
M 

     effect. A detailed description is presented in [4]. Examples 
 

          of simulated adverse conditions are shown in Fig. 2.  
 

                   

 

Sh = Nc + Nd ; 
   

(26) 
  

          
 

 Sv = 3 + M + B  , (27)       
 

    V.  EXPERIMENTAL RESULTS   

    

Nc 
 

Nd 
 

Nb 
   

 

              
 

where Sh and Sv are the velocities in the horizontal and 
vertical directions, 3 represents the propagation rule applied 
three times, M is the maximum drift value, B is the movement 
exerted by the buoyancy force, and Nc, Nd, Nb are the three 
time intervals that determine how many frames need to pass 
before computing the effects of propagation, drift, and 

 
First, the parameters used by the proposed methods are re-

ported. Then, the experimental results obtained by the method 

for the simulation of synthetic frame sequences, and by the 

proposed smoke detection approach are presented. For each 
method, the description of the procedure used to evaluate. 

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS–PART A: 

SYSTEMS AND HUMANS 7 
 
Simulation of synthetic smoke frame sequences - 

Theparameters were experimentally tuned in order to achieve 

a good realism. We initialized the cellular model with a 
density D = 45, and extension E = 5: 

f (xi, yj , 0) = 45 ,  0 < i < 5, j = 0 . (29) 
 

The threshold used do discard almost-empty cells is TP = 0.01, the 
 
 

 

a.b. original image c. smoke region d. segmented smoke 

region 
 
 
drift multiplying factor is fd = 3, the buoyancy proportionality 

factor is fb = 5, the time intervals used for determining the speed S 

of the simulation are Nc = 3, Nd = 29, Nb = 30. The constant used 

to control the visibility of the smoke is fm = 2, the parameter used 
to  
increase or decrease the luminance is  

• Smoke detection approach - The parameters are the 
samefor the Algorithm A and Algorithm B. The 
parameters 

 

used for the slow moving region detection are a = 0.7, b = 0.7, c = 

5, Tl = 10, Th = 30, TM = 0.1. For the smoke color analysis, we 

used T1 = 40, T2 = 40, T3 = 30, T4 = 255, TC = 0.1. The 

parameters of the sharp edge detection are TS = 30. For the 

detection of growing and rising regions, we used TGL = 5, TGH = 

10, TRL = 0, TRH = 10. 

 

B. Simulation of synthetic smoke frame sequences 
 

 

 
 
 

 
 
 

 
 
The first step of the realism validation of the obtained 

frame sequences consists in the visual examination of the 

obtained results. Examples of simulated smoke images are 
shown in Fig. 1, and examples of simulated adverse 
environmental conditions are shown in Fig. 2.  

As visible in Fig. 1 and Fig. 2, the obtained results are very 
similar to real scenes. Examples of complete simulated frame 
sequences are available at [40].  

In order to obtain a measure of the obtained realism, the 
simulated frame sequences were compared to real frame 

sequences by evaluating the results obtained by the proposed 

smoke detection approach. In particular, the results related to 
the Algorithm A permitted to evaluate the realism of every 

pixel of the tested frame sequences. 
C.  Smoke detection approach: Algorithm A 
 

The tests were performed by using three collections of 
frame sequences. For each frame, there is a corresponding 

binary image that describes the segmented smoke plume. Fig. 
3 shows an example of segmented smoke plume. The used 
sets of frame sequences are: 
 

1) DST1-5low-quality real frame sequences correspondingto 4 
different environments, inluding both smoke and non-smoke 
samples;  
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2) DST2-5medium-quality real frame sequences corre-sponding 

to 4 different environments, inluding both smoke and non-
smoke samples;  

3) DST3-5low-quality synthetic frame sequences corre-sponding 
to 4 different environments, inluding both smoke and non-
smoke samples. 

 
From these collections, we created four datasets by 
considering a number of consecutive frames N equal to 5. The 
datasets are summarized in Table I.  

In order to use the neural networks with the best training for 
each dataset, we performed an N-fold cross-validation scheme 
with N = 10 [41]. The used classifiers are two-layer feed-

forward neural networks, tested in different configurations, 
with different numbers of nodes in the hidden layer: 10, 15, 
20, 25. The output node is Boolean and the topology of the 
hidden layer nodes is tan-sigmoidal.  

A summary of the results of the proposed approach is 

depicted in Table II. We refer to True Positives as the 

percentage of smoke samples correctly identified as such, and 

True Negatives as the percentage of non-smoke samples 
correctly identified as non-smoke. We also reported the values 

of sensitivity and specificity:

 
Sensitivity = 

True Positives  
; 

 
 

     

     

  True Positives + False Negatives  
 

 
Specificity = 

True Negatives  
. (30)  

    

    

  True Negatives + False Positives  
 

It is  possible  to  observe  that  the  total classification error 
 

is always  <  0.2%.  In  particular,  the tests  performed  on 
  

the aggregated dataset DTS4 show that the synthetic smoke 
three different collections of frame sequences: 
 

1) DSF1 -16low-quality frame sequences corresponding 
to16 environments, including both smoke and non-
smoke frames;  

2) DSF2 -31synthetic frame sequences corresponding to16 
environments, including both smoke and non-smoke 
frames; 

 
3) DSF3 - composed by both the frame sequences 

DSF1and DSF2. 
 
The used feature datasets are related to these sets of frame 
sequences. The datasets are summarized in Table V.  

In order to test the generalization capability of the classifiers 

using the proposed feature set and search the most accurate 

classification technique, we used the entire feature set to test 

different classifiers. The topology of the neural networks and the 

used training algorithm are the same of the ones used for the 

Algorithm A. Table VI summarize the obtained results by using 

features extracted considering a number of consecutive frames N 

= 5. It is possible to observe that feed-forward neural networks 

obtained the best results. In particular, using a neural classifier 

with 35 nodes in the hidden layer, the obtained total classification 

error is always < 0.2%. A similar accuracy was also obtained by 

using kNN classifiers. Neural networks, however, are more 

suitable for real-time applications because they are able to obtain 

better performances in terms of computational time. For example, 

the time needed by a feed-forward neural network with 10 

neurons in the hidden layer to classify the tested feature set is 

about 1/10 of the time required by a kNN classifier with k = 10. 
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Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total 
Name L. Size (%) (%) (%) (%) (%) (%) (%) 
DST1-5 10 1.94  98.06 0.00  0.00 100.00 100.00  0.00 
DST2-5 10 1.71  97.84 0.18  0.27 86.31 99.82   0.45 
DST3-5 20 1.59 98.37 0.04 0.01 99.33 99.96 0.05 
DST4-5 15 1.73 98.08 0.10 0.10 94.73 99.90 0.19 
         

 
 

Dataset Frame Features × Non-smoke samples / 
Name Sequence Samples Smoke samples 
DSF1 DSF1 13 × 5895 5536/359 
DSF2 DSF2 13 × 5732 5381/351 
DSF3 DSF1 + DSF2 13 × 11636 10917/719 

    

 
Notes: Hidden L. Size = number of hidden layer nodes of the feed-foreward neaural 
networks; Sens. = Sensitivity; Spec. = Specificity.  

TABLE III 
RESULTS OF THE ALGORITHM A VALIDATED USING ONLY REAL DATA 

 
Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total 
Name L. Size (%) (%) (%) (%) (%) (%) (%) 
Training: DST4-5         

Validation: DST1-5 + DST2-5 20 2.43 97.56 0.01 0.01 99.66 99.99 0.01 
         

 
Notes: Hidden L. Size = number of hidden layer nodes of the feed-foreward neaural 
networks; Sens. = Sensitivity; Spec. = Specificity. 

 
plumes obtained by using our approach can be effectively 
used to increase the performance of the detection system in 
the case that few real data are available. Detailed results are 
presented in [3].  

In order to test the adherence to real data, we also performed 

the N-fold cross-validation using the DST4-5 dataset (both real 

and synthetic data) during the training step, but using only the 

samples from DST1-5 and DST2-5 datasets (real data) as 

validation data. The obtained results are depicted in Table III. 

The total classification error is decreased to 0.01%. For this 

reason, it is possible to infer that the frame sequences obtained 

by using the proposed method can effectively improve the 

generalization capability of the neural classifiers.  
The Algorithm A was also evaluated by using frame 

sequences obtained applying the proposed methods for the 

simulation of adverse conditions. Table IV summarizes the 

results of the classification under simulated fog, increased 

and decreased luminance, and additive Poisson noise. These 

results show how the adverse conditions do not have a 

relevant impact on the number of false alarms (Fp), while the 

number of missed detections can increase, resulting in a 

lower true positive (Tp) percentage. This is especially 

verified in the case of fog. However, this is an intrinsic 

limitation of machine vision systems that operate in visible 

light conditions.  
The proposed techniques for the introduction of simulated 

adverse conditions are then proved to be useful to adapt and 
test the smoke detection system in such situations. 

 
D. Smoke detection approach: Algorithm B 

 
1) Results of the smoke detection method on different en-

vironmental conditions: we tested the Algorithm B by using 

 
 

 

TABLE IV 
RESULTS OF THE ALGORITHM A UNDER ADVERSE CONDITIONS 

 
Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total 
Name L. Size (%) (%) (%) (%) (%) (%) (%) 

DST1-5  10 1.94 98.06  0.00  0.00 100.00 100.00 0.00 
DST1-5 Fog 10 1.95 98.01  0.02  0.02 99.06 99.97 0.04 
DST1-5 - Lum 10 1.96 98.04  0.00  0.00 100.00 100.00  0.00 
DST1-5 + Lum 10 1.96 98.04 0.00 0.00 100.00 100.00 0.00 
DST1-5 + Noise 15 1.94 97.99 0.03 0.04 98.11 99.97 0.07 

          

 
Notes: Sens. = Sensitivity; Spec. = Specificity; Fog = addition of simulated fog; -Lum: 
decreased luminance (Y) channel; +Lum = increased luminance (Y) channel; Noise = 
additive Poisson noise. 

 
frame sequences composed by a large number of frames, with 
a frame-level classification (smoke / non-smoke). We used 

 
The results obtained by the neural classifier under adverse 

conditions are summarized in Table VII. The used classifier is 

a feed-forward neural network and the number of considered 

consecutive frames is N = 5. These results show that the 

approach obtained a good accuracy also on data affected by 

noise. It is possible to observe that the Sensitivity and 

Specificity obtained on noisy frame sequences are very 

similar to the ones obtained on the original data. However, in 

the presence of fog the system obtained a higher detection 

error. As stated before, this is an intrinsic limitation of 

machine vision systems operating in visible light conditions. 
 

2) Sensitivity analysis: the robustness of the 

proposedapproach to improperly tuned parameters has been 
tested by evaluating the accuracy obtained with different 

parameter configurations. In particular, the parameter 

configuration used by the feature extraction process was 

evaluated by modifying every variable in a range from −20% 

to +20% of its working point.  
The accuracy of the proposed wildfire detection algorithm 

TABLE II TABLE V 
RESULTS OF THE ALGORITHM A DATASETS USED FOR TESTING THE ALGORITHM B 
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TABLE VI 

RESULTS OF THE ALGORITHM B 
 

Classifier Dataset Tp Tn Fp Fn Sens. Spec. Total 
  (%) (%) (%) (%) (%) (%) (%) 
 DSF1 5.19 86.96 6.96 0.90 85.24 92.59 7.85 

Linear DSF2 6.12 90.61 3.26 0.00 100.00 96.52 3.26 
 DSF3 4.88 89.22 4.60 1.30 79.00 95.10 5.90 
 DSF1 6.09 92.20 1.71 0.00 100.00 98.18 1.71 

QuadraticDSF26.12 91.12 2.76 0.00 100.00 97.06 2.76 
 DSF3 6.14 68.47 25.35 0.03 99.44 72.98 25.39 
 DSF1 6.09 93.57 0.34 0.00 100.00 99.64 0.34 

kNN-1 DSF2 6.12 93.60 0.28 0.00 100.00 99.70 0.28 
 DSF3 6.18 93.55 0.28 0.00 100.00 99.71 0.28 
 DSF1 6.09 93.32 0.59 0.00 100.00 99.37 0.59 

kNN-3 DSF2 6.12 93.44 0.44 0.00 100.00 99.54 0.44 
 DSF3 6.18 93.34 0.48 0.00 100.00 99.49 0.48 
 DSF1 6.09 93.15 0.76 0.00 100.00 99.19 0.76 

kNN-5 DSF2 6.12 93.20 0.68 0.00 100.00 99.28 0.68 
 DSF3 6.18 93.17 0.65 0.00 100.00 99.30 0.65 
 DSF1 6.09 92.74 1.17 0.00 100.00 98.75 1.17 

kNN-10 DSF2 6.12 92.83 1.05 0.00 100.00 98.88 1.05 
 DSF3 6.18 92.78 1.04 0.00 100.00 98.89 1.04 
 DSF1 6.09 93.67 0.24 0.00 100.00 99.75 0.24 

NN-25 DSF2 6.12 93.79 0.09 0.00 100.00 99.91 0.09 
 DSF3 6.18 93.65 0.17 0.00 100.00 99.82 0.17 
 DSF1 6.09 93.79 0.12 0.00 100.00 99.87 0.12 

NN-30 DSF2 6.12 93.70 0.17 0.00 100.00 99.81 0.17 
 DSF3 6.18 93.61 0.21 0.00 100.00 99.78 0.21 
 DSF1 6.09 93.76 0.15 0.00 100.00 99.84 0.15 

NN-35 DSF2 6.12 93.81 0.07 0.00 100.00 99.93 0.07 
 DSF3 6.18 93.66 0.16 0.00 100.00 99.83 0.16 
 DSF1 6.09 93.74 0.17 0.00 100.00 99.82 0.17 

NN-40 DSF2 6.12 93.44 0.44 0.00 100.00 99.54 0.44 
 DSF3 6.10 93.57 0.25 0.08 98.75 99.73 0.33 

         

 
Notes. Classification error obtained on the different datasets with the methods: Feed-
Forward Neural Network with one hidden layer composed by 25 node (NN-25), 30 nodes 
(NN-30), 35 nodes (NN-35), 40 nodes (NN-40); k Nearest Neighbor with k = 1 (kNN-1), 
k = 3 (kNN-3), k = 5 (kNN-5), k = 10 (kNN-10); Linear classifier (linear); Quadratic 
classifier (Quadratic). Sens. = Sensitivity; Spec. = Specificity. 
 

TABLE VII 
RESULTS OF THE ALGORITHM B UNDER ADVERSE CONDITIONS 

 
Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total 
Name L. Size (%) (%) (%) (%) (%) (%) (%) 

DSF1 30 6.09 93.79  0.12  0.00 100.00 99.87  0.12 
DSF1 Fog 10 5.90 93.08  0.83  0.19 96.94 99.11  1.02 
DSF1 - Lum 40 6.09 93.86 0.05 0.00 100.00 99.95 0.05 
DSF1 + Noise 30 6.09 93.77 0.14 0.00 100.00 99.86 0.14 

         

 
Notes: Sens. = Sensitivity; Spec. = Specificity; Fog = addition of simulated fog; -Lum: 
decreased luminance (Y) channel; Noise = additive Poisson noise. 
 
 
was then evaluated on all the considered datasets by using neural 

networks and the 10-fold cross-validation technique. The 

obtained results are summarized in Table VIII, which reports also 

the classification error obtained using the initial parameters of the 

proposed algorithm. It is possible to observe that, in most of the 

cases, the total error obtained by using modified parameter 

configurations is similar to the value obtained using the initial 

configuration. It is then possible to infer that neural networks are 

able to compensate the presence of noisy data obtained using 

different parameter configurations of the feature extraction 

techniques. A similar analysis can also be performed in order to 

search the best configuration of the proposed approach in specific 

applicative contexts. 
 

3) Tuning of the classification threshold: the other con-

sidered parameter is the classification threshold value Ct, 

which is applied to the floating point output obtained using 
neural networks with an output layer composed by a single 
linear node. For each dataset, we selected the configurations 
of neural networks which produced the best results with an 
output layer composed by a Boolean node (reported in 

 
TABLE VIII 

RESULTS OF THE SENSITIVITY ANALYSIS OF THE USED THRESHOLDS 
 

Dataset Original Hidden Threshold Resulting 
 

Name Total (%) L. size Mod. (%) Total (%) 
 

DSF1 0.12 10 +20 1.56 
 

DSF1 ′′ 
30 −20 0.02  

 
 

DSF2 0.07 15 +20 0.16 
 

DSF2 ′′ 
45 −20 0.07  

 
 

DSF3 0.16 35 +20 0.91 
 

DSF3 ′′ 30 −20 0.19  
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DSF1 + Fog 1.02 20 +20 1.88 
 

DSF1 + Fog ′′ 
25 −20 1.26  

 
 

DSF1 - Lum 0.05 30 +20 0.80 
 

DSF1 - Lum ′′ 
45 −20 0.03  

 
 

DSF1 + Noise 0.14 35 +20 0.64 
 

DSF1 + Noise ′′ 
40 −20 0.10  

 
 

      

 
 
 

 
TABLE IX 

ACCURACY USING THE FEATURE SELECTION PROCESS 
 

Dataset N. of Hidden Total 
Name Features L. size (%) 

    

DSF1-FFS 3 1 − 35 0.14 
DSF2-FFS 3 1 − 35 0.02 
DSF1 13 1 − 35 0.13 
DSF2 13 1 − 35 0.02 

     
Notes: -FFS: dataset computed using the Forward Feature Selection. 
 
 
Table VI and Table VII) and repeated the accuracy evaluation 
using an output layer composed by a linear node. We then 

performed the classification of the datasets using values of Ct 

equal to [0, 0.1, 0.2, . . . 1]. The obtained receiver operating 
characteristic (ROC) curves are shown in Fig. 4. The curves 
show that the method is robust to false negatives. Moreover, it 
is possible to observe that the number of false positives can be 
largely tuned according to the applicative situations by 

varying the classification threshold Ct.  
4) Feature selection: in order to decrease the 

computationaltime needed by the feature selection step and to 

test the capability of a reduced feature set to characterize 

different situations, we also evaluated the results obtained by 

introduc-ing a feature selection step. The best features were 

searched distinctly for every considered environment. All the 

frame sequences describing an environment were used to 

compute a set of features. Then, we searched the 3 most 

distinctive features by applying the 10-fold cross-validation 

technique and a forward feature selection algorithm based on 

a 1-NN classifier. Finally, the accuracy of the proposed smoke 

detection approach was evaluated using the reduced feature 

set. We evaluated neural networks with different numbers of 

nodes in the hidden layer, using the 10-fold cross-validation 

technique. The results obtained by applying the described 

procedure to the datasets DSF1, DSF2 are shown in Table IX. 

It is possible to observe that the total error obtained by using 

the feature selection strategy is very similar to the one 

obtained with the complete set of features. Considering that 

this strategy permits to limit the number of computed features 

without reducing the obtained accuracy, the feature selection 

step performed on the sets of frame sequences related to same 

environmental scenario can effectively be useful to reduce the 

computational time and hardware costs. 
 

5) Comparison with methods in the literature: as a com-
parison, we applied the proposed wildfire detection method on 
two publicly available collections of frame sequences: 



                                                       Print ISSN: 2249 – 3492, Online ISSN: 2249 – 3506 

 

   

 

Nisha. V.S / Management, Science and Technology / 2017 / 51 

 

International Journal of Research in 

Management, Science and Technology 

 

Management, Science and Technology 
 
     (a)         (b)        TABLE X      

 

     DSF1 EER = 0.05%         DSF2 EER = 0%     RESULTS OF THE ALGORITHM B ON THE PUBLIC COLLECTIONS OF FRAME 
 

 1          1             

SEQUENCES    
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The performance evaluation of the proposed smoke detec- 
 

                     
 

Fig. 4. ROC curves obtained by varying the classification threshold from 0 tion approach was carried out by using both real and simulated  

to 1: (a) DSF1; (b) DSF2; (c) DSF3; (d) DSF1 + Fog (Parameters modified  

smoke frame sequences. Moreover, we evaluated the robust-  

by −40%); (e) DSF1 - Lum; (f) DSF1 + Noise. The FN number has been  

          

minimized,  while  the  FP  number  can  be  largely  tuned  according  to  the ness  of the  approach to different parameter configurations, 
 

applicative situations.               the possibility to tune the sensibility to false alarms, and the  

                     
 

                     accuracy obtained by applying feature reduction techniques. 
 

 •  DSPub1-4frame sequences corresponding to4environ- Compared with  other  methods in  the  literature on  datasets 
 

  ments, available at [42], including both smoke and non- composed by real frame sequences, the proposed smoke detec- 
 

  smoke frames. A larger dataset, containing these frame tion approach obtained accurate results on a greater number of 
 

  sequences, was used to evaluate the methods described environments and weather conditions. The obtained results are 
 

  in [18]. The frame-level evaluation obtained a number of satisfactory and suggest that the approach can be effectively 
 

  false alarms equal to 0.1%.           used in different applicative contexts.    
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 •  DSPub2-4frame sequences corresponding to1environ- We used two procedures to validate the method proposed 

 

  ment, available at [43], including both smoke and non- for the simulation of synthetic smoke frame sequences. First,  

                      

  smoke frames. The results obtained by testing the method we visually compared the obtained results with real wildfire  

                      

  described in [44] on a larger dataset that contains these frame sequences. Then, we compared the performances of the  

                      

  frame sequences are reported in [6]. The results obtained proposed smoke segmentation algorithm on both simulated and  

                      

  by performing a  frame-level evaluation are: Sensitivity real frame sequences. The obtained results showed that the  

                      

  equal to 50.55%, Specificity equal to 99.62%.     simulation method is able to obtain realistic smoke clouds in 
 

Since no ground truth is publicly available for the datasets all the evaluated environmental scenarios. Moreover, we exper- 
 

DSPub1 and DSPub2, we manually performed a classification imentally observed that the use of simulated frame sequences 
 

of every frame. We then evaluated the accuracy of the proposed can effectively increase the accuracy and generalization capa- 
 

wildfire detection method on these datasets by using neural bility of the proposed wildfire smoke detection approach when 
 

networks with different number of nodes in the hidden layer. tested on real frame sequences.      
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